Cách tính k trong giao thoa sóng

Công thức giao thoa sóng, vật lí 12

Công thức giao thoa sóng, vật lý 12

+) Biên độ sóng cơ tại M:

(A_M=begin{vmatrix} 2Acosbegin{bmatrix} dfrac{pi(d_1-d_2)}{lambda}+dfrac{varphi_1+varphi_2}{2}& end{bmatrix} end{vmatrix})

(A_M^2=A_1^2+A_2^2+2A_1A_2cos Delta varphi_M)

(Delta varphi_M=dfrac{2pi}{lambda}(d_1-d_2)+Delta varphi)

Phương trình sóng tại điểm M:

(u_M=2Acosbegin{bmatrix}dfrac{pi(d_2-d_1)}{lambda}+dfrac{varphi_2-varphi_1}{2} & end{bmatrix}.cosbegin{bmatrix} omega t-dfrac{pi(d_1+d_2)}{lambda}+dfrac{varphi_1+varphi_2}{2}& end{bmatrix})

Số điểm cực đại cực tiểu

+) Cùng pha cực đại: (-dfrac{S_1S_2}{lambda} leq k leq dfrac{S_1S_2}{lambda})

+) Cùng pha cực tiểu: (-dfrac{S_1S_2}{lambda}-dfrac{1}{2} leq k leq dfrac{S_1S_2}{lambda}-dfrac{1}{2})

+) Ngược pha cực đại: (-dfrac{S_1S_2}{lambda}-dfrac{1}{2} leq k leq dfrac{S_1S_2}{lambda}-dfrac{1}{2})

+) Ngược pha cực tiểu: (-dfrac{S_1S_2}{lambda} leq k leq dfrac{S_1S_2}{lambda})

+) Vuông pha cực đại: (-dfrac{S_1S_2}{lambda}-dfrac{1}{4} leq k leq dfrac{S_1S_2}{lambda}-dfrac{1}{4})

+) Vuông pha cực tiểu: (-dfrac{S_1S_2}{lambda}-dfrac{3}{4} leq k leq dfrac{S_1S_2}{lambda}-dfrac{3}{4})

Sóng có cực đại cực tiểu:

+) Khi sóng có cực đại thì điều kiện tại M sẽ là:

(d_2-d_1=klambda)

+) Khi sóng có cực tiểu thì điều kiện tại điểm M là:

(d_2-d_1=(k+0,5)lambda)

Mở rộng nếu 2 nguồn lệc pha (Delta varphi)

+) Cực đại: (d_2-d_1=k lambda+dfrac{Delta varphi}{2pi}.lambda)

+ Cực tiểu: (d_-d_1=(k+0,5)lambda+dfrac{Delta varphi}{2pi}.lambda)

Với (Delta varphi= varphi_2-varphi_1)

Khoảng cách trong giao thoa sóng

Bài toán tìm khoảng cách từ điểm M trên đường trung trực gần nhất dao động cùng pha, ngược pha:

+) Cùng pha: (klambda geq dfrac{S_1S_2}{2} Rightarrow k_{min})

+) Ngược pha: ((k+0,5)lambda geq dfrac{S_1S_2}{2} Rightarrow k_{min})

(Rightarrow d(M;S_1S_2)_{min}=k_{min}lambda)

Tìm số điểm dao động trong giao thoa sóng:

Bài toán tìm số điểm dao động cùng pha, ngược pha với nguồn (S_1S_2) trong (MI): (với (I) là trung điểm (S_1S_2))

+) Cùng pha: (dfrac{S_1S_2}{2lambda} leq k leq dfrac{d}{lambda})

+) Ngược pha: (dfrac{S_1S_2}{2lambda}-dfrac{1}{2} leq k leq dfrac{d}{lambda}-dfrac{1}{2})

Với (d=sqrt{MI^2+{dfrac{S_1S_2^2}{4}}})

Xác định khoảng cách lớn nhất, nhỏ nhất. Gọi (d_1) là khoảng cách từ điểm (M) đến (S_1S_2):

(left{begin{matrix}d_2^2=sqrt{S_1S_2^2+d_1^2}\ d_2-d_1=klambdaend{matrix}right. Rightarrow sqrt{S_1S_2^2+d_1^2}-d_1=klambda)

Giao thoa sóng luôn là một vấn đề khiến bao thế hệ học sinh đau đầu, bởi vậy Cunghocvui đã viết nên bài viết tổng hợp lý thuyết giao thoa sóng cần nắm vững giúp các bạn học tập dễ dàng và hiệu quả hơn.

Công thức giao thoa sóng, vật lý 12

I) Giao thoa sóng cơ

1) Hiện tượng giao thoa sóng

– Giao thoa là hiện tượng hai sóng kết hợp khi gặp nhau thì có những điêm ở đó chúng luôn tăng cường lẫn nhau, ở một số điểm thì chúng luôn luôn triệt tiêu lẫn nhau.

– Hai nguồn kết hợp là hai nguồn dao động cùng phương, cùng tần số, có hiệu số pha không đổi theo thời gian. Với hai nguồn kết hợp có cùng pha được gọi là hai nguồn đồng bộ.

– Các đường sóng có hình hypebol được gọi là vân giao thoa.

2) Điều kiện để có giao thoa

Để có giao thoa giữa hai sóng thì buộc hai sóng đó là hai sóng kết hợp: dao động cùng phương, có cùng tần số, có hiệu số pha không đổi theo thời gian.

II) Công thức giao thoa sóng

Giao thoa của hai sóng phát ra từ hai nguồn kết hợp (S_1 ), (S_2) cách nhau một khoảng (l)

Công thức giao thoa sóng, vật lý 12

– Phương trình sóng tại hai nguồn: Điểm M cách hai nguồn (S_1 ), (S_2) lần lượt (d_1),(d_2)

(u_1=Acos(2pi ft + varphi _1) ) và (u_2 = Acos(2pi ft + varphi_2))

– Phương trình sóng tại M do hai sóng từ hai nguồn truyền tới

(u_{1M}=Acos(2pi ft – 2pi dfrac{d_1}{lambda})) và (u_{2M} = Acos(2pi ft -2pi dfrac{d_2}{lambda} + varphi _2))

(u_M = u_{1M} + u_{2M})

(u_M = 2Acos (pi dfrac{d_1 – d_2}{lambda }+dfrac{Delta varphi}{2}) cos(2pi ft – pi dfrac{d_1 – d_2}{lambda } + dfrac {varphi_1 + varphi_2} {2}))

– Biên độ dao động tại M

(A_M = 2Aleft | cos(pi dfrac {d_1 – d_2}{lambda }+ dfrac {Deltavarphi }{2}) right |)với (Delta varphi = varphi_2 – varphi_1)

– Những điểm dao động với biên độ cực đại

(d_2 – d_1 = klambda +dfrac{Delta varphi }{2 pi}lambda ) với (k = 0; pm1; pm2; pm3;…)

– Những điểm dao động với biên độ cực tiểu

(d_2 – d_1 = (k+ dfrac {1}{2}) lambda + dfrac {Delta varphi }{2 pi}lambda ) với (k = 0; pm1; pm2; pm3;…)

Công thức giao thoa sóng, vật lý 12

Lưu ý:

– Khoảng cách giữa 2 cực đại (2 cực tiểu) liên tiếp là (dfrac {lambda} {2}).

– Khoảng cách giữa 1 cực đại và 1 cực tiểu gần nhất là (dfrac {lambda} {4}).

– Tại trung điểm I của 2 nguồn sóng:

+) 2 nguồn cùng pha: I dao động với biên độ cực đại.

+) 2 nguồn ngược pha: I dao động với biên độ cực tiểu.

Các dạng bài tập giao thoa sóng

1) Tìm số điểm dao động với biên độ cực đại, cực tiểu giữa hai nguồn.

Phương pháp: Tính theo điều kiện cực đại, cực tiểu.

– Với điểm M dao động cực đại, suy ra (d_2 – d_1 = klambda)

Ta có (d_1 + d_2 = S_1S_2)

(Rightarrow) (d_2 = dfrac {klambda + S_1S_2}{2}) với (0 < d_2 < S_1 S_2)

(Rightarrow) (0< dfrac {k lambda + S_1S_2}{2}

Thay giá trị của (k = 0; pm1; pm2; pm3;…) vào (1), thỏa mãn thì đó là số điểm dao động cực đại

– Với điểm M dao động cực tiểu cũng làm tương tự như trên, suy ra (d_2 – d_1 = (k+ dfrac {1}{2}) lambda )

2) Tìm số điểm dao động với biên độ cực đại, cực tiểu giữa hai điểm bất kỳ.

Công thức giao thoa sóng, vật lý 12

Phương pháp: Tính theo điều kiện cực đại, cực tiểu.

– Lấy P thuộc MN có dao động cực đại: (d_2 – d_1 = klambda)

– Di chuyển P từ M đến N thì hệ số không hề giảm dần, do đó: (MS_1 – MS_1 > k.lambda geq NS_2 – NS_1)(2)

Thay giá trị của (k = 0; pm1; pm2; pm3;…) vào (1), thỏa mãn thì đó là số điểm dao động cực đại.

– Tương tự với trường hợp cực tiểu.

3. Các điểm nằm trên đường trung trực của đoạn thẳng nối hai nguồn

Công thức giao thoa sóng, vật lý 12

Phương pháp: Áp dụng các phương trình trong phần công thức giao thoa sóng

4. Các điểm gần nhất, xa nhất

Đây là bài toán khó nhất trong 4 dạng, cần có tính chất suy luận và tùy từng tình huống mà có những lập luận sao cho hợp lí.

Trả lời

Email của bạn sẽ không được hiển thị công khai.